3.5.39 \(\int \frac {x^3 (c+d x+e x^2)}{(a+b x^3)^{3/2}} \, dx\) [439]

Optimal. Leaf size=542 \[ -\frac {2 x \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}}+\frac {4 e \sqrt {a+b x^3}}{3 b^2}+\frac {8 d \sqrt {a+b x^3}}{3 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {4 \sqrt {2-\sqrt {3}} \sqrt [3]{a} d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} b^{5/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {4 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{b} c-2 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} b^{5/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \]

[Out]

-2/3*x*(e*x^2+d*x+c)/b/(b*x^3+a)^(1/2)+4/3*e*(b*x^3+a)^(1/2)/b^2+8/3*d*(b*x^3+a)^(1/2)/b^(5/3)/(b^(1/3)*x+a^(1
/3)*(1+3^(1/2)))-4/3*a^(1/3)*d*(a^(1/3)+b^(1/3)*x)*EllipticE((b^(1/3)*x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)*x+a^(1/3
)*(1+3^(1/2))),I*3^(1/2)+2*I)*(1/2*6^(1/2)-1/2*2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/(b^(1/3)*x+a^
(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(1/4)/b^(5/3)/(b*x^3+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/(b^(1/3)*x+a^(1/3)*(1
+3^(1/2)))^2)^(1/2)+4/9*(a^(1/3)+b^(1/3)*x)*EllipticF((b^(1/3)*x+a^(1/3)*(1-3^(1/2)))/(b^(1/3)*x+a^(1/3)*(1+3^
(1/2))),I*3^(1/2)+2*I)*(b^(1/3)*c-2*a^(1/3)*d*(1-3^(1/2)))*(1/2*6^(1/2)+1/2*2^(1/2))*((a^(2/3)-a^(1/3)*b^(1/3)
*x+b^(2/3)*x^2)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/b^(5/3)/(b*x^3+a)^(1/2)/(a^(1/3)*(a^(1/3)+b^(
1/3)*x)/(b^(1/3)*x+a^(1/3)*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.21, antiderivative size = 542, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {1842, 1900, 267, 1892, 224, 1891} \begin {gather*} \frac {4 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \left (\sqrt [3]{b} c-2 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d\right ) F\left (\text {ArcSin}\left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} b^{5/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}-\frac {4 \sqrt {2-\sqrt {3}} \sqrt [3]{a} d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\text {ArcSin}\left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} b^{5/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {8 d \sqrt {a+b x^3}}{3 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}+\frac {4 e \sqrt {a+b x^3}}{3 b^2}-\frac {2 x \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^3*(c + d*x + e*x^2))/(a + b*x^3)^(3/2),x]

[Out]

(-2*x*(c + d*x + e*x^2))/(3*b*Sqrt[a + b*x^3]) + (4*e*Sqrt[a + b*x^3])/(3*b^2) + (8*d*Sqrt[a + b*x^3])/(3*b^(5
/3)*((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)) - (4*Sqrt[2 - Sqrt[3]]*a^(1/3)*d*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3)
- a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*EllipticE[ArcSin[((1 - Sqrt[3])*a^(1
/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(3^(3/4)*b^(5/3)*Sqrt[(a^(1/3)*(a^(1/3
) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt[a + b*x^3]) + (4*Sqrt[2 + Sqrt[3]]*(b^(1/3)*c - 2*
(1 - Sqrt[3])*a^(1/3)*d)*(a^(1/3) + b^(1/3)*x)*Sqrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])
*a^(1/3) + b^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sqrt[3])*a^(1/3) + b^(1/3)
*x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*b^(5/3)*Sqrt[(a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3
)*x)^2]*Sqrt[a + b*x^3])

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 267

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 1842

Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = m + Expon[Pq, x]}, Module[{Q = Pol
ynomialQuotient[b^(Floor[(q - 1)/n] + 1)*x^m*Pq, a + b*x^n, x], R = PolynomialRemainder[b^(Floor[(q - 1)/n] +
1)*x^m*Pq, a + b*x^n, x]}, Dist[1/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1)), Int[(a + b*x^n)^(p + 1)*ExpandToSum[
a*n*(p + 1)*Q + n*(p + 1)*R + D[x*R, x], x], x], x] + Simp[(-x)*R*((a + b*x^n)^(p + 1)/(a*n*(p + 1)*b^(Floor[(
q - 1)/n] + 1))), x]] /; GeQ[q, n]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && IGtQ[m,
 0]

Rule 1891

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rule 1892

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
 3]]}, Dist[(c*r - (1 - Sqrt[3])*d*s)/r, Int[1/Sqrt[a + b*x^3], x], x] + Dist[d/r, Int[((1 - Sqrt[3])*s + r*x)
/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]

Rule 1900

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[Coeff[Pq, x, n - 1], Int[x^(n - 1)*(a + b*x^n)^p, x
], x] + Int[ExpandToSum[Pq - Coeff[Pq, x, n - 1]*x^(n - 1), x]*(a + b*x^n)^p, x] /; FreeQ[{a, b, p}, x] && Pol
yQ[Pq, x] && IGtQ[n, 0] && Expon[Pq, x] == n - 1

Rubi steps

\begin {align*} \int \frac {x^3 \left (c+d x+e x^2\right )}{\left (a+b x^3\right )^{3/2}} \, dx &=-\frac {2 x \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}}-\frac {2 \int \frac {-a b c-2 a b d x-3 a b e x^2}{\sqrt {a+b x^3}} \, dx}{3 a b^2}\\ &=-\frac {2 x \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}}-\frac {2 \int \frac {-a b c-2 a b d x}{\sqrt {a+b x^3}} \, dx}{3 a b^2}+\frac {(2 e) \int \frac {x^2}{\sqrt {a+b x^3}} \, dx}{b}\\ &=-\frac {2 x \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}}+\frac {4 e \sqrt {a+b x^3}}{3 b^2}+\frac {(4 d) \int \frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\sqrt {a+b x^3}} \, dx}{3 b^{4/3}}+\frac {\left (2 \left (\sqrt [3]{b} c-2 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d\right )\right ) \int \frac {1}{\sqrt {a+b x^3}} \, dx}{3 b^{4/3}}\\ &=-\frac {2 x \left (c+d x+e x^2\right )}{3 b \sqrt {a+b x^3}}+\frac {4 e \sqrt {a+b x^3}}{3 b^2}+\frac {8 d \sqrt {a+b x^3}}{3 b^{5/3} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )}-\frac {4 \sqrt {2-\sqrt {3}} \sqrt [3]{a} d \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} E\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{3^{3/4} b^{5/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {4 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{b} c-2 \left (1-\sqrt {3}\right ) \sqrt [3]{a} d\right ) \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} F\left (\sin ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right )|-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} b^{5/3} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.06, size = 118, normalized size = 0.22 \begin {gather*} \frac {2 \left (2 a e-b c x+3 b d x^2+b e x^3+b c x \sqrt {1+\frac {b x^3}{a}} \, _2F_1\left (\frac {1}{3},\frac {1}{2};\frac {4}{3};-\frac {b x^3}{a}\right )-3 b d x^2 \sqrt {1+\frac {b x^3}{a}} \, _2F_1\left (\frac {2}{3},\frac {3}{2};\frac {5}{3};-\frac {b x^3}{a}\right )\right )}{3 b^2 \sqrt {a+b x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(c + d*x + e*x^2))/(a + b*x^3)^(3/2),x]

[Out]

(2*(2*a*e - b*c*x + 3*b*d*x^2 + b*e*x^3 + b*c*x*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/3, 1/2, 4/3, -((b*x^3)
/a)] - 3*b*d*x^2*Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[2/3, 3/2, 5/3, -((b*x^3)/a)]))/(3*b^2*Sqrt[a + b*x^3])

________________________________________________________________________________________

Maple [A]
time = 0.40, size = 800, normalized size = 1.48 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)

[Out]

e*(2/3/b^2*a/((x^3+a/b)*b)^(1/2)+2/3*(b*x^3+a)^(1/2)/b^2)+d*(-2/3/b*x^2/((x^3+a/b)*b)^(1/2)-8/9*I/b^2*3^(1/2)*
(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-
1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+
1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*((-3/2/b*(-a*b^2)^(1/3)+1/2*I*
3^(1/2)/b*(-a*b^2)^(1/3))*EllipticE(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(
1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3)
))^(1/2))+1/b*(-a*b^2)^(1/3)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*
3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1
/3)))^(1/2))))+c*(-2/3/b*x/((x^3+a/b)*b)^(1/2)-4/9*I/b^2*3^(1/2)*(-a*b^2)^(1/3)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2
*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/
2*I*3^(1/2)/b*(-a*b^2)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a
*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(
1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b
^2)^(1/3)))^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((x^2*e + d*x + c)*x^3/(b*x^3 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.09, size = 107, normalized size = 0.20 \begin {gather*} \frac {2 \, {\left (2 \, {\left (b c x^{3} + a c\right )} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right ) - 4 \, {\left (b d x^{3} + a d\right )} \sqrt {b} {\rm weierstrassZeta}\left (0, -\frac {4 \, a}{b}, {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right ) + {\left (b e x^{3} - b d x^{2} - b c x + 2 \, a e\right )} \sqrt {b x^{3} + a}\right )}}{3 \, {\left (b^{3} x^{3} + a b^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x, algorithm="fricas")

[Out]

2/3*(2*(b*c*x^3 + a*c)*sqrt(b)*weierstrassPInverse(0, -4*a/b, x) - 4*(b*d*x^3 + a*d)*sqrt(b)*weierstrassZeta(0
, -4*a/b, weierstrassPInverse(0, -4*a/b, x)) + (b*e*x^3 - b*d*x^2 - b*c*x + 2*a*e)*sqrt(b*x^3 + a))/(b^3*x^3 +
 a*b^2)

________________________________________________________________________________________

Sympy [A]
time = 5.72, size = 129, normalized size = 0.24 \begin {gather*} e \left (\begin {cases} \frac {4 a}{3 b^{2} \sqrt {a + b x^{3}}} + \frac {2 x^{3}}{3 b \sqrt {a + b x^{3}}} & \text {for}\: b \neq 0 \\\frac {x^{6}}{6 a^{\frac {3}{2}}} & \text {otherwise} \end {cases}\right ) + \frac {c x^{4} \Gamma \left (\frac {4}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {4}{3}, \frac {3}{2} \\ \frac {7}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {7}{3}\right )} + \frac {d x^{5} \Gamma \left (\frac {5}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {5}{3} \\ \frac {8}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {8}{3}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(e*x**2+d*x+c)/(b*x**3+a)**(3/2),x)

[Out]

e*Piecewise((4*a/(3*b**2*sqrt(a + b*x**3)) + 2*x**3/(3*b*sqrt(a + b*x**3)), Ne(b, 0)), (x**6/(6*a**(3/2)), Tru
e)) + c*x**4*gamma(4/3)*hyper((4/3, 3/2), (7/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/2)*gamma(7/3)) + d*x**5*g
amma(5/3)*hyper((3/2, 5/3), (8/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/2)*gamma(8/3))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x^2+d*x+c)/(b*x^3+a)^(3/2),x, algorithm="giac")

[Out]

integrate((x^2*e + d*x + c)*x^3/(b*x^3 + a)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^3\,\left (e\,x^2+d\,x+c\right )}{{\left (b\,x^3+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^3*(c + d*x + e*x^2))/(a + b*x^3)^(3/2),x)

[Out]

int((x^3*(c + d*x + e*x^2))/(a + b*x^3)^(3/2), x)

________________________________________________________________________________________